## Learning outcomes

| Outcome symbol | After completing first-cycle studies in mathematics, the graduate: | Reference to PRK level 6 |
| :---: | :---: | :---: |
| KNOWLEDGE |  |  |
| K_W01 | understands significance of mathematics and its applications to the development of modern civilization | P6S_WG-O1 |
| K_W02 | understands the importance of proof and assumptions in mathematics | P6S_WG-O1 |
| K_W03 | knows methods of mathematical analysis, linear algebra, probability theory and mathematical statistics, enabling to build models of medium complexity in other branches of science | $\begin{aligned} & \hline \text { P6S_WK-O2.1 } \\ & \text { P6S_WG-O1 } \end{aligned}$ |
| K_W04 | knows basic theorems of previously studied branches of mathematics | P6S_WG-O1 |
| K_W05 | knows basic examples which present mathematical concepts and enable to refute wrong hypotheses or invalid reasoning | P6S_WG-O1 |
| K_W06 | knows selected concepts and methods of mathematical logic, set theory, discrete mathematics included in fundamentals of other branches of mathematics | P6S_WG-O1 |
| K_W07 | knows fundamentals of differential and integral calculus of functions of one and many variables; knows other branches of mathematics used in the calculus, linear algebra and topology in particular | P6S_WG-O1 |
| K_W08 | knows fundamentals of computing techniques and programming which help mathematicians to carry out their tasks, and is aware of their limitations | P6S_WG-O1 |
| K_W09 | has basic knowledge of at least one software package used for symbolic calculations | P6S_WG-O1 |
| K_W10 | has achieved English language proficiency equivalent to level B2 of European Framework of Reference for Languages and is familiar with specialist terminology from selected branches of mathematics | P6S_UK-O4.3 |
| K_W11 | knows principles of occupational health and safety | P6S_WK-O2.2 |
| K_W12 | has basic knowledge of the law and ethics relating to scientific research activities and teaching, as well as to forms of individual entrepreneurship and copyright law | $\begin{aligned} & \hline \text { P6S_WK-O2.2 } \\ & \text { P6S_WK-O2.2 } \\ & \text { P6S_WK-O2.3 } \end{aligned}$ |
| SKILLS |  |  |
| K_U01 | is able to present in a clear manner, both in speech and writing, correct mathematical reasoning, and formulate theorems and definitions | $\begin{aligned} & \hline \text { P6S_UW-O3 } \\ & \text { P6S_UK-O4.1 } \\ & \text { P6S_UU-O6 } \\ & \hline \end{aligned}$ |
| K_U02 | demonstrates the ability to use propositional logic and quantifiers; can properly use quantifiers in colloquial language | P6S_UW-O3 |
| K_U03 | demonstrates the ability to perform mathematical proofs by complete induction; can define functions and recurrence relations | P6S_UW-O3 |
| K_U04 | is able to support mathematical reasoning using simple diagrams, such as Vienna or Hasse diagrams, or graphs | P6S_UW-O3 |
| K_U05 | is able to create new objects by means of constructing quotient spaces or Cartesian products | P6S_UW-O3 |
| K_U06 | uses the language of multiplicity theory to interpret problems relating to different branches of mathematics | P6S_UW-O3 |
| K_U07 | understands issues concerning different types of infinity and orders in sets | P6S_UW-O3 |
| K_U08 | can use the concept of real number; can give examples of irrational numbers and leap numbers | P6S_UW-O3 |
| K U09 | is able to define functions, also using boundary crossings, and describe | P6S_UW-O3 |


|  | their properties |  |
| :---: | :---: | :---: |
| K_U10 | can use in different contexts the concept of convergence and limit; is able to - on easy and medium difficulty levels - calculate limits of sequences and functions, determine absolute and conditional convergence of series | P6S_UW-O3 |
| K_U11 | can interpret and explain functional dependencies presented in the form of formulae, charts, graphs, schemes and apply them to practical problems | P6S_UW-O3 |
| K_U12 | can apply theorems and methods of differential calculus of functions of one and many variables to problems relating to optimization, to finding local and global extrema, and to function investigation; can give precise justification of their reasoning | P6S_UW-O3 |
| K_U13 | can use the definition of an integral of a function of one and many real variables; can explain analytical and geometric sense of the concept | P6S_UW-O3 |
| K_U14 | can integrate functions of one and many variables by parts and substitution; can change order of integration; can present areas of plane surfaces and volumes in forms of integrals | P6S_UW-O3 |
| K_U15 | can apply numeric tools and methods to solving selected problems of differential and integral calculus, including those basing on its applications | P6S_UW-O3 |
| K_U16 | uses the concepts of linear space, vector, linear transformation, matrix | P6S_UW-O3 |
| K_U17 | notices algebraic structures (group, ring, body, linear space) in different mathematical issues, not necessarily associated directly with algebra | P6S_UW-O3 |
| K_U18 | can compute determinants and know their properties; can give a geometric representation of a determinant and understands its relation to mathematical analysis | P6S_UW-O3 |
| K_U19 | solves sets of linear equations with constant coefficients; can use geometric interpretation of solutions | P6S_UW-O3 |
| K_U20 | finds matrices of linear transformations with respect to different bases; computes eigenvalues and eigenvectors of matrices; can explain geometric sense of these concepts | P6S_UW-O3 |
| K_U21 | reduces matrices to a canonical form; can use this skill to solve linear differential equations with constant coefficients | P6S_UW-O3 |
| K_U22 | is able to interpret a system of ordinary differential equations in the language of geometry by means of vector field and phase space | P6S_UW-O3 |
| K_U23 | recognizes and determines most important topological properties of subsets of Euclidean space and metric spaces | P6S_UW-O3 |
| K_U24 | applies topological properties of sets and functions to solving problems relating to quality | P6S_UW-O3 |
| K_U25 | recognizes problems, including practical issues, which can be solved using algorithms; can specify this type of problem | P6S_UW-O3 |
| K_U26 | can construct and analyze an algorithm in accordance with a specification and write it in a selected programming language | P6S_UW-O3 |
| K_U27 | is able to compile, start and test an independently written computer program | P6S_UW-O3 |
| K_U28 | is able to use computer programs for data analysis | P6S_UW-O3 |
| K_U29 | is able to model and solve discrete problems | P6S_UW-O3 |
| K_U30 | uses the concept of probabilistic space; is able to construct and analyze a mathematical model of a random experiment | P6S_UW-O3 |
| K_U31 | can give various examples of discrete and continuous probability distributions and discuss selected random experiments and mathematical models in which these distributions occur; knows practical applications of basic distributions | P6S_UW-O3 |


| K_U32 | knows how to use formula of total probability and Bayes formula | P6S_UW-O3 |
| :--- | :--- | :--- |
| K_U33 | can identify parameters for the distribution of a discrete and continuous <br> random variable; can apply boundary theorems and law of large numbers <br> to probability evaluation | P6S_UW-O3 <br> K_U34 |
| knows how to use statistical characteristics of a population and the <br> equivalent sample | P6S_UW-O3 |  |
| K_U35 | is able to conduct simple statistical inference, also with the use of <br> computer tools | P6S_UW-O3 |
| K_U36 | is able to present mathematical problems and issues in a simple colloquial <br> language | P6S_UK-O4.1 <br> P6S_UK-O4.2 |
| K_U37 | has acquired English language proficiency in the field of mathematics <br> according to the requirements for level B2 of European Framework of <br> Reference for Languages | P6S_UK-O4.3 <br> P6S_UK-O4.2 <br> P6S_UK-O4.3 |
| K_U38 | can write a short paper and deliver an oral presentation, both in English <br> and Polish, relating to previously studied problems; uses relevant <br> resources to fulfill the task | P6S_UK-O4.3 <br> P6S_UK-O4.2 |
| K_U39 | can prepare a longer presentation discussing a selected problem in <br> mathematics and its applications | P6S_UW-O3 |
| SOCIAL COMPETENCES | P6S_UU-O6 <br> P6S_KK-O7.1 |  |
| K_K01 | understands the need for lifelong education |  |
| K_K02 | demonstrates the ability to formulate precise questions to deepen his <br> understanding of a given topic or to find missing elements of reasoning | P6S_UU-O6 <br> P6S_KR-O9 |
| K_K03 | can interact and work in a team; understands the need of systematic work <br> on long term projects | P6S_KR-O9 <br> P6S_KK-O7.2 |
| K_K04 | understands the significance of intellectual honesty, both in his own and in <br> other people's activities; demonstrate ethical behavior | P6S_KK-O7.2 <br> P6S_KO-O8.2 |
| K_K05 | understands the need to popularize selected achievements in the field of <br> higher mathematics | P6S_KK-O7.1 |
| K_K06 | deepen his knowledge and abilities relating to the scope of his interests; is <br> able to obtain information from specialist literature independently, also in <br> foreign languages | P6S_UU-O6 <br> P6S_KO-O8.3 |
| K_K07 | demonstrates the ability to formulate opinions concerning important <br> mathematical issues | P6S_KO-O8.1 |

